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The strength of discontinuous fibre-reinforced composites is often reduced due to local 
stress concentrations at large fibre-end-gaps. A theoretical prediction of the strength of 
unidirectional fibre composites is performed based upon a probabilistic model of the 
fibre configuration. This work further develops the concepts of Bader, Chou and 
Quigley, and Fukuda and Chou. A limiting case of the present analysis shows good 
agreement with the results of Smith. Emphases are placed on the effect of matrix stress 
transfer properties including matrix plasticity. For a matrix deforming elastically, the 
strength is reduced as the composite size (N) increases. As compared with the rule-of- 
mixtures prediction for continuous fibre composites with identical fibre volume fraction, 
the reduction is shown to be proportional to (In N) -P, with the exponent P being between 
0.5 and 1 for two-dimensional composites and between 0.25 and 0.5 for three- 
dimensional composites. For a matrix deforming plastically, the local stress concentrations 
are reduced. Based upon the analytical expression of the local load sharing rule for a plas- 
tically deformed matrix, the composite strength is shown to approach the modified rule- 
of-mixtures of Kelly and Tyson as the matrix yield stress decreases. 

I .  I n t r o d u c t i o n  

Discontinuous fibre reinforced metal and polymer 
composites are gaining increasing technological 
importance due to their versatility in properties 
and their high performance. Unlike continuous 
fibre composites the mechanical behaviour of dis- 
continuous fibre composites is often dominated by 
the complex stress distributions due to fibre dis- 
continuities [1-3].  In particular, the local stress 
concentration at fibre ends plays a critical role in 
affecting the performance of discontinuous fibre 
composites, and it often reduces the strength of a 
discontinuous fibre composite to a level far less 
than that of a continuous fibre composite with the 
same fibre volume content. Several theories [3] 
have been proposed to predict the strength of dis- 
continuous fibre composites. One type of theory is 
based on the modification of the "rule-of- 
mixtures," which was originally developed for con- 

tinuous fibre composites. Since the axial stress dis- 
tribution in a discontinuous fibre is not uniform, 
the rule-of-mixtures has been modified by 
researchers to take into account the effect of fibre 
length. 

Among discontinuous fibre composites, aligned 
fibre composites have many attractive properties 
for aeronautical application [4-6].  Kacir and 
Narkis [7] pointed out that when complicated 
shapes and double curvatures were to be fabricated 
by matched-die high-pressure moulding techniques, 
aligned discontinuous fibre composites had an 
advantage over their equivalent continuous mats. 
The ability of aligned fibre composite to elongate 
both parallel and perpendicular to the fibre direc- 
tion without splitting, complements the predomi- 
nant shear deformation of woven materials [5]. 
Because of their useful properties, highly aligned 
discontinuous fibre composites have been com-  
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Figure 1 Schematic representation of fibre configuration. Sites of stress concentration are indicated by x. 

mercially produced by the centrifuge [5] and 
vacuum [61 processes. 

The present paper treats the case of aligned dis- 
continuous fibre composites. The discontinuity of 
fibres gives rise to gaps between adjacent fibre 
ends. The collection of the adjacent fibre ends is 
termed a "fibre-end-gap" (see Fig. la). The width 
of a fibre-end-gap depends upon the number of 
fibre ends in the gap. The existence of a fibre-end- 
gap inevitably induces a stress concentration on 
the fibres bridging such a gap. Thus the fracture of 
a bridging fibre can take place at locations of high 
stress concentration while the stress level in most 
parts of the fibre is well below the ultimate 
strength. Such a failure mechanism needs to be 
taken into account in the modification of the rule- 
of-mixtures. 

Bader et  aI. [8] first proposed the concept of a 
critical zone in dealing with short fibre composite 
strength and defined the fibres in the zone as 
either ending fibres or bridging fibres. Since the 
distribution of fibres is normally fairly random, it 
is essential to examine the strength of discontinu- 
ous fibre composites by a probabilistic method. 

Fukuda and Chou [9] first adopted such an 
approach. In [9], the probability distribution of 
fibre-end-gap size was calculated using the concept 
of "critical zone". However, they did not consider 
the probability distribution of the maximum gap 
size which determines the strength of the com- 
posite. 

A rigorous discussion on the probabilisitc 
aspect of the strength of discontinous fibre com- 
posites has been given by Smith [10]. Using a two- 
dimensional chain-of-bundles model with the sim- 
plified assumption of local load sharing [ 10-16], 
Smith proved that no non-degenerate limit distri- 
bution [17] exists for the asymptotic strength of 
the system as the number of the fibres tends to 
infinity. This fact is quite contrary to the situa- 
tion for the asymptotic strength of continuous 
fibre composites in which the existence of the 
limit distribution has been conjectured [12-15]. 
Smith also showed upper and lower bounds for the 
asymptotic strength of the system. The obtained 
bounds may be useful to inspect the validity of the 
physical models, although the simple assumption 
of local load sharing rule needs to be modified. 
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Figure 2 Schematic cross-sectional view of fibre configuration. Solid circles depict ending fibres and open circles indi- 
cate bridging fibres. A group of adjacent ending fibres is termed a fibre-end-gap (i.e., A, B, C and D). 

In this paper a physical model is presented to 
examine the strength of unidirectional discontinu- 
ous fibre composites affected by local stress con- 
centrations in two-dimensional and three-dimen- 
sional fibre arrays. The approximate probability 
distribution function for the maximum gap size is 
used to obtain the strength of composites. The 
matrix is assumed to deform elastically as well as 
elastically and perfectly-plastically. The local load 
sharing rule for the case of plastic matrix has been 
obtained by the authors [18] from the explicit 
solutions of a two-dimensional shear-lag analysis 
and it is incorporated into the probabilisitc 
approach. Since the matrix plastic deformation 
tends to disperse the local stress concentration, the 
strength of the composite is shown to approach 
the modified rule of mixtures obtained by Kelly 
and Tyson [19] as the matrix yield strength 
decreases. 

2. Strength theory of two-dimensional fibre 
composites 

It is assumed in the present analysis that the fibres 
are of uniform length and sufficiently long and 
failure of the composite occurs due to fibre break- 
age by local stress concentrations. Fig. 1 shows 
schematically the effect of fibre configuration on 
composite strength. Two typical examples of fibre 
configuration are considered. Case (a) obviously 
gives rise to comparatively larger stress concentra- 
tions on the bridging fibres at the locations 
marked by x than case (b). The stress at point x in 
case (a) reaches the fibre ultimate strength at the 
nominal composite strength level much lower than 
that of case (b). In the following we formulate the 
strength theory of discontinuous fibre composite 
affected by such large fibre-end-gaps. 

2.1. Stress c o n c e n t r a t i o n  f ac to r  
The composite is first modelled as a two-dimen- 
sional array of parallel discontinuous fibres of 

length I. Following [8], the strength is examined 
for a critical zone of length/3I with 0 < (3 ~ l. The 
critical zone length is assumed to be of the same 
order of fibre ineffective length. In regard to the 
critical zone, a discontinuous fibre can end in the 
zone (ending fibre), in which case it bears no load, 
or it can bridge the zone (bridging fibre) and con- 
t r ibute to the strength of the critical zone. The 
probabilities of finding an ending fibre and a 
bridging fibre are j3 and 1- /3 ,  respectively. All 
fibres are assumed to have uniform strength ogu. 
Within each transverse section of the composite, 
ending fibres and bridging fibres are distributed 
randomly. A typical fibre configuration on a 
transverse section in a two-dimensional fibre array 
is shown in Fig. 2. The ending fibres and bridging 
fibres are depitcted, respectively, by solid circles 
and open circles. Under unit applied stress, the 
stress in the bridging fibres is enhanced by the 
stress transferred from the neighbouring ending 
fibres. For example, the stress in the bridging fibre 
No. 8 in this figure is enhanced by the ending 
fibres Nos. 1, 5, 6, 7, 9, 12 and 13. In other words, 
it is enhanced by the neighbouring fibre-end-gaps 
A, B, C and D. 

Since stress concentration factor (K) cannot be 
readily calculated by considering the enhancement 
effect from all the fibre-end-gaps, assumptions 
need to be introduced for the load sharing rule. 
The first and simplest lower value approximation 
for k is obtained by only considering the enhance- 
ment effects of the first nearest neighbouring 
fibre-end-gaps both from the right and left sides 
the bridging fibre. This assumption is allowable if 
the probability for finding the ending fibre is com- 
paratively small. Then the stress concentration fac- 
tor / ~  can be calculated using the shear-lag 
method [20]. The second and third order lower 
value approximations (/~" n = 2, 3) are also 
obtained by taking into account the effects from 
the second and third nearest fibre-end-gaps, respec- 
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Figure  3 Model of stress con- 
centration calculations for a 
fibre-end-gap in discontinuous 
fibre composite with matrix 
plastic deformation zone at 
the tip of the gap. 

tively. Another simple approximation for the load 
sharing rule was used in [10-16] ,  where it is 
assumed that the stress enhancement of  a bridging 
fibre is given only by the first nearest neighbouring 
fibre-end-gaps on both sides and the magnitude is 

n I q- n r 
KI' = 1 + ~ (1) 

where n z and nr are numbers of  ending fibres in 
the left and right fibre-end-gaps. Here, the stress in 
an ending fibre is transferred to the two nearest 
intact fibres, so that a bridging fibre with (n z + nr) 
adjacent ending fibres receives an additional load 
of (n l + n r ) / 2 .  This assumption gives an upper 
value approximation of stress concentration factor. 
Thus we obtain 

f l  < K z  l ~<Ka l < . . . ~ < K ~ < K ~  (2) 

Hereafter we consider the first lower value 
approximation (/~{) and upper value approxima- 
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tion ( /~ ' )  for simplicity, denoted as weak and 
strong local load sharing rule, respectively. In the 
case of strong local load sharing rule, clearly, if 
one bridging fibre fails then the whole composite 
fails. Thus neglecting the load bearing capacity of  
the matrix, the strength of the composite was 
given [10] by 

where Jlv is the largest number of  ending fibres 
adjacent to a bridging fibre, a m is the fibre tensile 
strength and N is the total number of  fibres in the 
composite. 

In the case involving the weak local load sharing 
rule, the stress of  the ending fibres are redistribu- 
ted more evenly among the bridging fibres on both 
sides. Using the shear-lag method (see Fig. 3), the 
stress concentration f a c t o r / ~  in the presence of 
n z and nr ending fibres is obtained as [18] 
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where U~ is half of the elastic crack opening dis- 
placement [21] at the nth fibre in b broken 
fibres, 

U~ = 7r[2(b--n) + l l ! ( 2 n - -  1)! 
22b[(b -- 1)!(n -- 1)!]: (5) 

and 

b = n z + n r +  1, Gn. m = 4/[1--4(n--m)Z]n 

Here we assume that the fibre length is sufficiently 
large so the stress concentration factor can be 
calculated from a continuous fibre model�9 How- 
ever, in the case of weak local load sharing rule, 
the failure of the (n I + 1)th fibre: does not cause 
the composite failure since K~ given in Equation 4 
is larger than the stress concentration factor K b in 
the 0 th  bridging fibre after the failure of the 
(n I + 1)th bridging fibre, (Appendix I). Clearly, 
the failure of the 0 th  bridging fibre causes the 
total failure of the composite�9 Thus neglecting the 
load bearing capacity of the matrix, the strength 
of the composite is given by 

X N = o fu /K ~ (6) 

The explicit expression of elastic stress concentra- 
tion factor K~ due to b broken fibres is first 
obtained by Hedgepeth [20] in the context of 
shear lag analysis 

K~ = 4.6 . . . .  (2b + 2) (7) 
3"5 . . . .  (2b + 1) 

This result has been lately proved rigorously by 
Hikami and Chou [ 18]. 

The explicit expression of K~ for composites 
with plastically deformed matrices has also been 
obtained by Hikami and Chou [21]. For the small 
scale plastic deformation case, the plastic stress 
concentration factor/s can be expressed in series 
expansion form in terms of the dimensionless plas- 
tic deformation zone length a. The first approxi- 

marion gives 

K~--~ K~ 1 2 b + l  2 (8) 

where 

n b ( b + l )  1 (T0)  
c~ ~-- 2(K~)Z(2 b + 1) Kb ~ (9) 

Matrix plastic deformation takes place when the 
applied stress exceeds the critical value o= e (= To/ 
U~) where 

To = ry(dEh/GA) ~/2 (10) 

The shear strength of the matrix, the shear modu- 
lus of the matrix and the stiffness of the fibre are 
denoted as Zy, G and E, respectively. The fibre 
spacing, the fibre cross-sectional area, and the 
thickness per fibre are also denoted as d, A and h, 
respectively. For the large scale plastic deforma- 
tion case, the fibre stress concentration factor at 
the tip of a fibre-end-gap can be well approxi- 
mated by 

t Kab "" 1 + -~ \-~-f=/ [ln(ba=/ro) + 3"] (11) 

where 7' is the Euler's constant (~ 0.577). 

2.2. Probability distribution of maximum 
fibre-end-gap 

The fibre-end-gap is modelled for the case of the 
two-dimensional array shown in Fig. la. The size 
of the critical zone [8] is denoted by 131. Focusing 
the attention on a single fibre-end, the probability, 
P,, that this fibre-end is in the gap consisting of n 
fibre-ends is 

P.  = n/3n-l(1 --/3) z (12) 
and 

Y ? .  = 1. (13) 
n = l  

Equation 12 is an improvement of the correspond- 
ing result of Fukuda and Chou [9]. The difference 
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in Pn between the present Equation 12 and the 
result of  Fukuda and Chou becomes significant 
when n and/3 are large. 

The probability that a given fibre-end is not in 
any one of the gaps with more than n fibre ends is 

Qn = 1 -  ~ Pi. (14) 
i = n + l  

When the above probabi l i ty  is independent for 
each fibre, the probability that there is no gap 
larger than size n is 

P(n) = (On) N (15) 

where N is the total number of  fibres in the com- 
posite. However, actually Qn for a given fibre is 
not independent of  the other fibres. When N is suf- 
ficiently larger than the average gap size ~, it is 
more suitable to express P(n)  of  Equation 15 as 

_P(n) = (Qn)  N/h (16) 
where 

h = ~ nP,. (17) 
r t = l  

Using Equations 12 and 14, Equation 16 can be 
rewritten as 

if(n) = {1 --/3n[n(1 - - /3)+  11} N~' (18) 
and 

/3' - _1 _ 1- - /3 .  (19) 
n 1+/3  

/~(n) can be used to determine the strength of dis- 
continuous fibre composites through the relation 
between gap size n and the corresponding stress 
concentration. Fig. 4 demonstrates the variation 
of /3(n)  with N and/3. It can be shown that _P(n) 
behaves like a step function and P(n)  changes from 
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Figure4 Cumulative probability distribution 
functions for the maximum fibre-end-gap size. 
o: N = 1 0  6, 13=0.2; o: N = 1 0  6, ~=0.1;  A: 
N =  108 , /3  = 0 . 2 .  

0 to 1 at n - M where M is determined from 

/3n[n(1 - - /3)+ llN/3' = 1. (20) 

M obtained from Equation 20 is termed the "most 
probable maximum gap size". Fig. 5 shows M a s  a 
function of t3 and N. For actual composites, the 
values of  M do not vary tremendously with/3 and 
N. When N is sufficiently large, using the formula 
1 - -  x -~ exp (--x) ,  P(n)  can be approximated as 

P(n) ~-- exp[--N/3nn(1--/3)21 . (21) 

This result agrees with the asymptotic form of 
P(n) obtained by Smith [10] for large n. 
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Figure 5 Most probable maximum gap size, M against 
critical zone parameter,/3. N denotes the total number of 
fibres. 



2.3. Modification of rule-of-mixtures 
In this section a strength theory is proposed for 
unidirectional discontinuous fibre composite based 
upon the probabilisitc approach in Section 2.2. 
The composite ultimate strength oeu is defined as 
the stress level at which fracture of the composite 
occurs. Consequently, within the first approxima- 
tion considered in Section 2.1, oeu is given as 

acu = a=V~ + o ' ( 1  -- V0 (22) 

where o= represents the applied fibre stress at the 
moment when the fibre stress at the stress concen- 
tration reaches Oeu. Thus o~ satisfies: 

a~u = /~(o=--r/Omy (1 -- V~)/V~) (23a) 

for the weak local load sharing rule where /~  
stands for Kg (Equation 7) and Kg (Equation 8) in 
elastic and plastic deformations, respectively. Also, 

a,u = K?(cr~-7?Omy(1 - V~)/V 0 (23b) 

for the strong local load sharing rule. Here, o "  is 
the matrix stress at the ultimate tensile strain of 
the fibre, Omy is the matrix yield stress, and V~ 
denotes fibre volume fraction. 

/s and /~]' represent the stress concentration 
factors obtained in Section 2.1 (Equations 1,7, 8, 
11). Since the composite fractures from the weak- 
est point, the stress concentration factors/f]  and 
/ ~  for the largest fibre-end-gap in the composite 
should be used. The average strength of the com- 
posite (= Ocu ) is then obtained by using the stress 
concentration factors K~ and k~ for the most 
probable maximum gap size M defined in Section 
2.2 (Equation 20). The parameter ~ in Equations 
23a and 23b represents the loading condition of 
the matrix in the fibre-end-gap. If the matrix is 
brittle, as in the case of polymer based composite, 
the crack propagates in the matrix along the fibre- 
end-gap prior to the failure of the intact bridging 
fibre. In this case the matrix in the fibre-end-gap 
will bear no load and r/is taken to be 0. However, 
in metal matrix composites, the matrix in the 
fibre-end-gap can deform plastically to the yield 
stress O'my. Then each fibre in the fibre-end-gap 
sustains the stress Omy(] --Vf)/Vf, thus reducing 
the applied stress o=. We take approximately this 
effect in Equations 23a and 23b with 77 = 1. 

3. Strength theory of three-dimensional 
fibre composites 

In the case of three-dimensional fibre array, the 
problem is more complicated and there is no rigor- 
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Figure 6 Schematic cross-sectional view of a three-dimen- 
sional fibre array. Solid circles indicate ending fibres and 
open circles for bridging.fibres. 

ous probabilistic treatment available. The shape of 
the fibre-end-gap cannot be uniquely defined for a 
given number of fibre ends and it is fairly involved 
to obtain the highest stress concentration factor in 
the intact bridging fibres. Furthermore, the fibre 
failure process here is more complex than that in 
the two dimensional case. To circumvent these dif- 
ficulties, Fukuda and Chou [9] took only compact 
fibre-end-gaps as the first approximation. Follow- 
ing this approximation, we also consider only 
special types of fibre-end-gaps which consist of 
square-arrayed, compact ending fibres. A typical 
example of such a fibre-end-gap is shown in Fig. 6, 
where ending fibres are indicated by solid circles 
and bridging fibres by open circles in the two- 
dimensional square lattice. We consider the largest 
square-arrayed group of ending fibres which can be 
accommodated in a given fibre-end-gap. The size 
of such a square array may be expressed as b x b 
(b = 1, 2, 3 . . . ) .  For example, in Fig. 6 the size of 
the square array is 2 x 2. Then the stress concen- 
tration factor for the actual fibre-end-gap is 
approximated by that of the corresponding square 
array fibre-end-gap. Using this approximation, the 
probability distribution for the maximum size of 
square arrayed gap is calculated. First, consider 
the probability that a given fibre end is not in any 
one of the gaps with more than n fibre ends. For 
0 < 3 ~ 1, it is approximately given as (Appendix 
II) 

Qn ~ 1 - ( n  + 1)2/3 (n+l)2.1. (24) 

Then the corresponding cumulative probability 
distribution function P(n) for the maximum fibre- 
end-gap size becomes 

/~(n) = [1 --(n + 1)2~(n+1)2-11 u/fi (25a) 
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where 

n = ~ n[nZfJ M-1 --(n + 1)2/3(n+l)2-'](25b) 
n = l  

P(n) in three-dimensional fibre composites also 
behaves like a step function and changes from 0 to 
1 at n ~M,  where M is the most probable maxi- 
mum gap size obtained as the solution of 

N(n + 1)2~(n+1)2-1//~ = 1. (26) 

The typical value of M in three-dimensional fibre 
composites lies between 2 and 4, which is approxi- 
mately the square root of the typical values of M 
in two-dimensional fibre composites. The average 
strength of the composite is then given by Equa- 
tions 27, 28a and 28b. 

Oeu = a=Vf + o~n(1 -- Vf) (27) 
where 

Ofu -- xt /~I[O~--name(l--  Vf)/Vf] (28a) 

for weak local load sharing rule and 

afu = X u K ~ [ o =  - -  r?Omy(1 -- VO/Vf] (28b) 

for strong local load sharing rule. 
In Equations 28a and 28b, the three-dimen- 

sional stress concentration factors for the most 
probable maximum gap size M are given as Xl/~ 
and XuF,~, with Xl and X" being the ratio of the 
three-dimensional concentration factors to the cor- 
responding two-dimensional results. 

4. Numerical results and discussions 
Numerical calculations are carried out for the 
strength of discontinuous fibre composite based 
upon the present theory. 

4.1. Composites with elastic matrix 
Fig. 7 shows the relation between the fibre volume 
fraction, V~ and average strength of the composite 
normalized by the matrix stress at failure, Oeu/a m. 
In this calculation, we adopted the following 
properties of a glass fibre reinforced thermoplastic 
composite [9]. The fibre length l, fibre diameter 
d~, fibre critical length le, critical zone parameter/3 
are assumed to be 1 mm, 0.01 mm, 0.1 mm and 
0.1, respectively. Both the strength ratio Cr~u/O m 
and the Young's modulus ratio, E~/Em between 
the fibre and matrix are taken to be 35.2. The 
total volume of the composite, Vis assumed to be 
400 mm3. 

In Fig. 7, the line [A] shows the simple rule-of- 
mixtures for continuous fibres, while the line [B] 
depicts the rule-of-mixtures modified for discon- 
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/ [ol 

/ [El 

/ -  

0 0.I  0 .2  

Figure 7 Strength of the composite as a function of VI. 
[A]: rule-of-mixtures; [B]: Kelly and Tyson [19]: [C] - 
[F]: present theory. [C]: 3-dimensional fibre array, weak 
local load sharing; [D]: 3-dimensional fibre array, strong 
local load sharing; [E]: 2-dimensional fibre array, weak 
local load sharing; [F]: 2-dimensional fibre array, strong 
local load sharing. 

tinuous fibres. Both cases do not take the effect of 
local stress concentrations into consideration. The 
dotted lines and solid lines depict the present 
results Of three-dimensional fibre array and two- 
dimensional fibre array, respectively. For each 
fibre array, upper value approximation and lower 
value approximation are shown. The lines [C] and 
[El represent the lower value approximations of 
strength based on the weak local load sharing rule 
while the lines [D] and [F] represent the upper 
value approximations based on the strong local 
load sharing rule. The composite strength is expec- 
ted to lie between these two bounds. The predic- 
ted strength of the present theory is far less than 
the value predicted from the rule-of-mixtures 
because of local stress concentrations. 

The effect of local stress concentration 
increases as the size of the composite increases, 
which causes the size effect of composite strength. 
Fig. 8 indicates the effect of composite size on 
composite strength for two-dimensional (solid 
lines) and three-dimensional (dotted lines) fibre 
arrays. Vf is assumed to be 0.2 and the same 
material constants as in Fig. 7 are used. For sim- 
plicity X in Equations 28a and 28b is taken to be 
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Figure 8 Strength of composite eeu normal- 
ized by a~n against total number of fibres N. 
Matrix deforms elastically. [A]: 3-dimen- 
sional, weak local load sharing; [B]: 3- 
dimensional, strong local load sharing; [C]: 
2-dimensional, weak local load sharing; [D]: 
2-dimensional, strong local load sharing; 
[E]: rule-of-mixtures. 
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1. The strength of the composite decreases mono- 
tonically with increasing N. For sufficiently large 
value of N, the strength of the composite is esti- 
mated by the following upper and lower bounds. 

V~ O ~u 
+ ( 1 - V O o m  <~ Ocu 

1+  5 lnN In 

g f  o fu  p 
<~ 7rw2 + (1 - -  V f ) o  m 

2 

[ / 1] 1/2 (29a) --[ln V/ln #] 
{two-dimensional fibre array) 

Vf o~ /X  

1 + ~ in In -- 1 

< g:o~./X t 
+ ( 1  - room 

~- ~ [ l n N / i n  

(three-dimensional fibre array) 

(29b) 

In deriving Equations 29a and 29b, the stress con- 
centration factor is approximated by 

KM = 3-5-7-" . ( 2 t / +  1) ~ 
(30) 

The left-hand side of the above inequalities is 
derived using the strong local load sharing rule 
while the right-hand side is derived from the weak 
local load sharing rule. These relations show that 
the reduction in composite strength due to 
increase in composite size is quite significant. The 
reduction is approximately proportional to 
(lnN) -P, with P being between 0.5 and 1 for two- 
dimensional composites and between 0.25 and 0.5 
for three-dimensional composites. 

4.2. Composites with elastic and perfectly 
plastic m a t r i c e s  

When plastic deformation of the matrix takes 
place around a fibre-end-gap, it tends to relax the 
local stress concentration in the intact bridging 
fibres. Consequently, the composite strength is 
expected to approach the value predicted by the 
modified rule-of-mixtures of Kelly and Tyson 
[ 19]. In this section we assume the weak local load 
sharing rule and discuss how the matrix plasticity 
affects the local stress concentration and reduces 
the size effect on composite strength. Fig. 9 
shows the relation between the total number of 
fibres; N and normalized strength, Ocu/a'm in the 
presence of large matrix plastic deformation 
between the ending fibre and bridging fibre at the 
tip of the fibre-end-gap. Calculations are carried 
out using Equations 11, 22 and 23a. The strength 
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Figure 9 Strength of composite Oeu nor- 
malized by Om against N. Matrix deforms 
elastically and perfectly plastically. [A]: 
2-dimensional, n =  0; [B]: 2-dimensional, 
r~ = l ;  [C]: 3-dimensional, r /=  0; [D]: rule- 
of-mixtures. 
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ratio O'fu/O'my is assumed to be 35.2 x 10, which is 
ten times larger than the case in Fig. 8. Fibre 
volume fraction Vf is taken to be 0.2. In this 
figure the line [A] represents the two-dimensional 
fibre array with ~/= 0 while line [B] corresponds 
to r~ = 1. The line [C] is for three-dimensional 
fibre array with ~7 = 0. It can be seen that the com- 
posite strength values are not far from those pre- 
dicted by the rule-of-mixtures (line [D]) and the 
size effect on the strength is quite weak. Further- 
more, it is shown that the load bearing condition 
of the matrix material in the fibre-end-gap (r/) has 
a rather small effect on the strength when Ofu/Omy 
is sufficiently large, and thus r/ is assumed to be 
zero in the subsequent calculations. 

Figs. 10 and 11 show the effect of  matrix yield 

strength on the strength of composites for two- 
dimensional and three-dimensional fibre arrays. 
The abscissa represents the dimensionless matrix 
shear strength Z. 

h 1/2 Z = ( ' r y /a fu ) (E+d  / G A )  . (31) 

The ordinate is the effective strengthening ratio F 
[9], which represents the reduction of the rein- 
forcement effect due to the discontinuity and 
defined as in Equation 32. 

( 

oc,, = V+a+ , ,F+  (1 - vOo'~. (32) 

We adopt for example, J3 = 0.1 and ~ = 0, and 
assume that fibre length, l is sufficiently large 
compared with lc. In the following, we consider 
two limiting cases of  matrix behaviour. First, if the 
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Figure 10 Effective strengthening ratio, 
F of two-dimensional fibre array against 
nondimensional matrix yield stress. Z. 
Arrows indicate the onsets of matrix 
plastic deformation. N is the total 
number of fibres. 
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Figure 11 F of three-dimensional fibre 
array against Z. Arrows indicate the on- 
sets of matrix plastic deformation. N is 
the total number of fibres. 

shear strength of the matrix is large, there is little 
stress relaxation by plastic deformation at the sites 
of stress concentrations. Thus F is given as 

1 (2M+ 1)! 
F - K~ - 2Z~M!(M+ 1)! (33) 

where the most probable maximum gap size M is 
given by Equation 20 for two-dimensional fibre 
array and by Equation 26 for three-dimensional 
fibre array. Second, the matrix shows plastic 
deformation at the tip of a fibre-end-gap i fZ  < Zo 
where [21] 

rr(2M-- 1)!(2M+ 2)! 
Zo = 24M+1[(M + 1)!(M-- 1)!12" (34) 

Within the small scale plastic deformation con- 
dition, (0 < Zo -- Z ~ Zo), the effective strengthen- 
ing ratio F is given by the following equation 
derived from Equation 8. 

F =  
1 

K~ 1 - 2 M + l  

(for 0 < Z o - - Z  ~ 1) 

Third, for the large scale plastic deformation con- 
dition (0 < Z ~ Zo), F is given from Equation 11, 
as the solution of 

F + ~ Z  lnM~-+3, '  = 1. (36) 

It can be shown that F in Equation 36 is asymp- 
totically expressed as 

for small Z. In Figs. 10 and 11, the onset of matrix 
plastic deformation is expressed by the arrow. The 

total numbers of fibres, N are also denoted in the 
figure. For each case of composite size, the effec- 
tive strengthening ratio F is calculated from Equa- 
tion 35 for small scale plastic deformation 
condition and from Equation 36 for large scale 
plastic deformation condition and the results are 
indicated by the solid lines. The dotted lines are 
the results from Equation 36. As expected, the 
size effect on the strength of composites decreases 
rapidly as Z approaching zero. 

As the matrix plastic deformation grows 
between the ending fibre and the intact bridging 
fibre, its extent may exceed the fibre length before 
the intact bridging fibre fails. This situation arises 
if the following condition is met 

Z <~ o= llE~dA~I/2--" (38) 
,:,,u 7 \ oh ! 

In this case the high ductility of the matrix 
annihilates the local stress concentration, when it 
has little effect on composite strength. Conse- 
quently, the modified rules-of-mixtures of Kelly 
and Tyson [19] essentially gives a reasonable 
approximation for the strength prediction. 

5. Conclusions 
The strength of unidirectional discontinuous fibre 
composites is studied based upon a probabilistic 
model of fibre configuration. The present theory 
quantifies the influence of matrix stress transfer 
properties on composite strength. The main find- 
ings are as follows. 

1. The analysis adopts the concept of critical 
zone with ending and bridging fibres first developed 
by Bader et al. and further develops the probabil- 
istic approach of Fukuda and Chou by considering 
the maximum stress concentration caused by the 
most probable maximum fibre-end-gap. 
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2. A limiting case of the present probabilistic 
model gives good agreement with the analytical 
results for two-dimensional composites obtained 
by Smith. 

3. For matrices deforming elastically, the local 
stress concentration around fibre-end-gaps reduce 
the strength of a composite to a level far less than 
the value predicted from the rule-of-mixtures. The 
upper and lower bounds for the effective 
strengthening ratio F (Equation 32) are obtained. 
When the size of a composite, N is sufficiently 
large, F is shown to be proportional to (ln N) -P, 
with the exponent P being between 0.5 and 1 for 
two-dimensional composites, and between 0.25 
and 0.5 for three-dimensional composites. 

4. The strength of composites with plastically 
deformable matrices is predicted for small scale 
and large scale plastic deformation conditions. 
Equation 37 qualitatively shows how the com- 
posite strength approaches the modified rule-of- 
mixtures predicted by Kelly and Tyson. 

5. Quantitative comparison of the present 
theory with experiment s is not feasible at the 
present because of the lack of data from highly 
controlled measurements. 
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mations of Equations A4 and A5, Knt,n ~ can be 
evaluated as follows. 

Am+ 1, m+ 1 ------" det L(n)det ~(m) (A4) 

d e t [  (*) ~ 1 (A5) 

* b (A6) Knl, nr ~ U~I+ 1 

The stress concentration factor for the 0th 
fibre on the edge of the fibre-end-gap after the 
breakage of the isolated bridging fibre is given by 

K~ = 4 . 6 . 8 . . . ( 2 b  + 2) (A7) 
3 . 5 . 7 . . - ( 2 b  + 1) 

Since b U~l+l ~ U2 b for b - -  2 ~ n I ~ 1, we obtain 
the following inequality. 

Knt, nr > U~ 37r ( 2 b - 3 ) ! !  (2b + 1)!! 
- ~> 1 .  

Kb Kb 4 (2b- -4) ! !  (2b + 2)!! 

(A8) 

Appendix I1: Derivation of Equation 24 
Since any ending fibre is situated in a fibre-end- 
gap, clearly Q0 = 0, which is consistent with Equa- 
tion 24. Then consider the probability that a given 
ending fibre is in a fibre-end-gap whose size is 
equal to or greater than two (= 1 - Q1). Fig. A1 
shows the schematic configuration of fibres corre- 
sponding to the above event. The given ending 
fibre is located at (0, 0). This ending fibre would 
be in one of the following fibre-end-gaps. 

Fibre-end-gap No. 1: (0, 0), (0, 1), 
(1, 0), (1, 1) 

Appendix I: Estimate of Equation 4 
Fig. 3 shows the schematic representation for the 
isolated bridging fibre surrounded by n I and n~ 
ending fibres. Here we consider the elastic stress 
concentration factor Knt, n r f'dr the isolated bridg- 
ing fibre is given by 

* b *b (A1) K.z,,~ ~ = U,n+l/L~m,~z+ 1 
where 

gbl~ l = ~(2n r + l)!(2n z+ 1)!/22b(nr!nt!) z 

(A2) 

*b Ant + 1, n I + 1 
Lnz+i'nl+l = det/~b (A3) 

/ b  represents the (b x b) matrix with its com- 
ponents given by [L]i,j = ( 4 / ~ ) [ 4 ( i - j ) 2 -  1]-1, 
2xn I + 1, n t + 1 denotes the (n l + 1, n; + 1) com- 
ponent of the adjoint matrix. Using the approxi- 
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0 

- I  i i~l  i L  E2 

-2  

- 5  

-3  -2 -I  0 I 2 .3 

Figure A1 The ending fibre configuration. 
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No. 2: (0, 0), (0 ,--1) ,  
0 , 0 ) ,  ( 1 , - ] )  

No. 3: (0, 0), (0, - 1), 
( -1 ,0) ,  ( - -1 , -1)  

No. 4: (0, 0), (0, 1), 
(--1,0), (--1,]) 

We define the  events  co r re spond ing  to  these  fibre- 

end  gaps as E b  E2, E3 and  E4. Then  

4 
1 - Q 1  = P r ( E 1 U E 2 U E 3 U E 4 )  = ~ Pr(Ei) 

i=l 

- ~ Pr(ECn&)+ ~ Pr(&nE~nEk) 
i ~ j  i#=j =/= k 

-- Pr(E1 n E2 n E3 n E4) 

= 4~ 3 - -  5/35 - -  2~ 6 + 4/~ 7 - - ~  (B1)  

For  0 < /3  ~ 1, the  above e q u a t i o n  can be approxi-  

m a t e d  as 
1 - -  Q1 ~- 4/33. ( B 2 )  

Using the same a p p r o x i m a t i o n  for 1 -  Qn we 

o b t a i n  
1 - Q n  ~- (n + 1)2/~ (n+l )L1 .  (B3)  
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